

FMVEA for Safety and Security Analysis of Intelligent and Cooperative Vehicles

1st International workshop on the Integration of Safety and Security Engineering (ISSE'14)

Christoph Schmittner, Zhendong Ma, Paul Smith

Agenda

- Background & Motivation
- Analysis Method and Results
- Outlook

Background & Motivation

Security is a rising concern for vehicles

Increased connectivity

Security is a rising concern for vehicles

- Hacking contest for a Telsa as part of a competition at the annual SyScan conference in Beijing
- "A Survey of Remote Automotive Attack Surfaces" C. Miller, C. Valasek

MOTOR AUTHORITY The Luxury and Performance Leader NEWS » FIRST DRIVES » AUTO SHOWS » PHOTOS » VIDEO

Home / News / Car Tech / Tesla Model S Hacked In Chinese Contest

Tesla Model S Hacked In Chinese Contest

2014 Tesla Model S in China http://www.motorauthority.com/news/1093422_tesla-model-s-hacked-in-chinese-contest

Security is a rising concern for vehicles

- Hacking contest for a Telsa as part of a competition at the annual SyScan conference in Beijing
- "A Survey of Remote Automotive Attack Surfaces" C. Miller, C. Valasek

NEWS » FIRST DRIVES » AUTO SHOWS » PHOTOS >> VIDEO The Luxury and Performance Leader Home / News / Car Tech / Tesla Model S Hacked In Chinese Contest BLAST THE HORN. CHANGE ABRUPTLY PREVENT CAR FROM CONTINUING SPEEDOMETER POWERING DOWN. TIGHTEN EVEN AFTER CAR AND GAS DRIVER'S AND DRAINING BATTERY TURNED OFF GAUGE AT WILL PASSENGER'S SEAT BELT CAUSE ENGINE TO **DISABLE POWER** ACCELERATE (CAN SLAM ON TURN HEADLIGHTS ON STEERING OR JERK **BE OVERRIDDEN** BRAKES AT **OR OFF WHEN LIGHTS** THE WHEEL WITH THE BRAKE) LEFT ON AUTO ANY SPEED

http://www.motorauthority.com/news/1093422_tesla-model-s-hacked-in-chinese-contest

With cooperative driving security will be a major risk factor

Vehicle control depends on information from other vehicles or infrastructure

Safety engineering for vehicles and systems of vehicles needs to include security

- A holistic approach is necessary
- ISO 26262 does not mention security
- We try to integrate ISO/IEC 15408 (Common Criteria) with ISO 26262

Vision

True holistic approach

Analysis Method and Results

Hazard and Vulnerability analysis and risk assessment

- Threat and failures analysis for a generic vehicle system
- The aim is to identify potential Threat Modes and Failures early in the design process
- We analyzed a generic vehicle system architecture and verified the results based on available penetration test data

Failure Modes, Vulnerabilities and Effects Analysis (FMVEA)

- A combined safety and security analysis method
- Vulnerabilities causes Threat modes

Abstract vehicle system architecture

Simplified vehicle architecture, LIN/MOST is excluded

Analysis focuses on the Telematics Unit

- Bridges High and Low Speed Can
- Has the largest attack surface

Safety and Security Services	Information and Navigation	Entertainment	Diagnostics
Send crash data	Call technical support	Receive voice communication	Transmit diagnostic data
Send vehicle position	Connect Wi-Fi / Bluetooth devices	Connect to external media sources	Receive over the air (OTA) firmware updates
Receive door look signal			

Analysis Results

• Excerpt from the FMVEA table

Function	Vulnerability / Failure Cause	Threat Mode / Failure Mode	Threat Effect / Failure Effect	System Status	System Effect	Severity	System Susceptibility	Threat Properties	Attack / Failure Probability	Risk
Over the Air Update	insufficient authentication of Telematics Network Operations System	Attacker masquerades itself as TNOS and sends own firmware Update (Spoofing)	Attacker deploys own firmware	-	safety- critical, Attacker has control over the vehicle	6	4	4	8	Very high

Analysis Results

Excerpt from the FMVEA table

Function	Vulnerability / Failure Cause	Threat Mode / Failure Mode	Threat Effect / Failure Effect	System Status	System Effect	Severity	System Susceptibility	Threat Properties	Attack / Failure Probability	Risk
Over the Air Update	connection is lost	Data missing from update	Update is interrupted	Updating	none	1			6	Very low

Outlook

Next steps

- Compare results to other combined Safety&Security analysis methods
 - CHASSIS, STPA-SEC
- Extend analysis to include systems of cooperative vehicles
- Derive security requirements from the analysis results

AIT Austrian Institute of Technology

your ingenious partner

Christoph Schmittner <u>Christoph.schmittner.fl@ait.ac.at</u> Ma Zhendong <u>Zhendong.ma@ait.ac.at</u> Paul Smith <u>Paul.smith@ait.ac.at</u>